Synthesis and Nicotinic Acetylcholine Receptor Binding Properties of Bridged and Fused Ring Analogues of Epibatidine

F. Ivy Carroll, ${ }^{*}{ }^{\dagger}$ T. Philip Robinson, ${ }^{\dagger}$ Lawrence E. Brieaddy, ${ }^{\dagger}$ Robert N. Atkinson, ${ }^{\dagger}$ S. Wayne Mascarella, ${ }^{\dagger}$ M. Imad Damaj, ${ }^{\dagger}$ Billy R. Martin, ${ }^{*}$ and Hernán A. Navarro ${ }^{\dagger}$
Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, North Carolina 27709, and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298

Received April 20, 2007

Abstract

Epibatidine analogues 3-5, possessing the pyridine ring fused to the 2,3 position of the 7-azabicyclo[2.2.1]heptane ring, and analogue 8a, possessing a benzene ring fused to the 5,6 position, were synthesized by procedures involving key steps of trapping 2,3-pyridyne, 3,4-pyridyne, and benzyne with tert-butyl $1 H$-pyrrole-1carboxylate. Two epibatidine analogues, $\mathbf{6}$ and 7 , which have the 2^{\prime}-chloropyridine ring bridged to the 7-azabicyclo[2.2.1]heptane ring via a methylene group, were synthesized, where the key step was an intramolecular reductive palladium-catalyzed Heck-type coupling. Even though the conformationally restricted epibatidine analogues, 3-7, and the benzo analogue 8a possess nAChR pharmacophore features thought to be needed for $\alpha_{4} \beta_{2}$ binding, they all showed low affinity for nAChRs relative to epibatidine. These studies provide new information concerning the pharmacophore for nAChRs and suggest that nitrogen lone-pair directionality and steric factors may be important. Interestingly, N-methylepibatidine, prepared as a standard compound for the study of bridged analogues $\mathbf{6}$ and 7, was a potent nAChR mixed agonist antagonist.

Introduction

In 1992, Daly and co-workers reported the isolation and structure determination of a compound showing potent antinociceptive activity from the skin of the Ecuadorean poison frog, Epipedobates tricolor, which they named epibatidine. ${ }^{1}$ Subsequent studies showed that the analgesic activity of epibatidine resulted from the interaction with nicotinic acetylcholine receptors (nAChRs). ${ }^{a 2-4}$ Epibatidine, similar to nicotine (2), possesses a pyridine ring connected to a second pyrrolidine ring. However, unlike nicotine, the pyrrolidine ring is less flexible because of the 2 -carbon bridge between the 1 and 4 positions. In addition, the pyridine ring of epibatidine has a 2^{\prime}-chloro substituent not present in nicotine. The unique structure and biological activity of epibatidine generated considerable interest and precipitated the synthesis and biological evaluation of a number of analogues as a means of learning more about the nAChR pharmacophore. ${ }^{5-7}$ However, the exact conformation for receptor affinity and modulation is currently still in doubt.
To gain additional information on the nAChR pharmacophore, we synthesized and evaluated the nAChR binding affinity of the conformationally restricted epibatidine analogues $3-7$. In addition, because the 5,6 -benzo analogue 8a was reported to have high affinity for nAChR, we synthesized and evaluated the $n A C h R$ binding properties of this compound. ${ }^{8}$ Preliminary results on the synthesis of $\mathbf{6}$ and $\mathbf{7}$ have been reported. ${ }^{9}$

Chemistry

The fused ring epibatidine analogues $\mathbf{3}$ and $\mathbf{4}$ were synthesized as outlined in Scheme 1. 3-Pyridyne, generated by treating 4-triethylsilylpyridin-3-yl trifluoromethanesulfonate (9) ${ }^{10}$ with cesium fluoride in acetonitrile, was added to tert-butyl $1 H$ -pyrrole-1-carboxylate (10) to give 11. Catalytic hydrogenation

[^0]Scheme 1^{a}

${ }^{a}$ Reagents: (a) $\mathrm{CsF}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$; (b) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, EtOAc; (c) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HCl}, 0^{\circ} \mathrm{C}$.
of 11 using 10% palladium on carbon in ethyl acetate yielded 12. Treatment of $\mathbf{1 1}$ and $\mathbf{1 2}$ with hydrogen chloride in methanol provided the desired 3,4-pyridine fused ring epibatidine analogues 3 and $\mathbf{4}$, respectively. A totally different synthesis of 4, which involved 16 steps and a very low overall yield, has been reported. ${ }^{11}$

The 2,3-pyridine-ring-based analogue 5 was synthesized by a procedure similar to that for 4 (Scheme 2). 2-Pyridyne, generated by treating 3-trimethylsilylpyridin-2-yl trifluoromethanesulfonate ($\mathbf{1 3})^{12}$ with cesium fluoride in acetonitrile, was added to tert-butyl $1 H$-pyrrole-1-carboxylate (10) to give 14. Catalytic reduction of $\mathbf{1 4}$ in ethyl acetate using 10% palladium on a carbon catalyst yielded 15. Removal of the tertbutyloxycarbonyl protecting group using trifluoroacetic acid in methylene chloride provided 5.

The bridged epibatidine analogue $\mathbf{6}$ was synthesized as shown in Scheme 3, starting with 2-amino-4-methylpyridine (16). Iodination of $\mathbf{1 6}$ using iodine in a periodic, sulfuric, and acetic acid mixture afforded a 71% yield of 2 -amino-5-iodo-4methylpyridine (17). The structure of $\mathbf{1 7}$ was established by analysis of the ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectrum, which showed singlets at $\delta 2.23,6.46$, and 8.27 ppm for the C4-methyl, H-3, and H-6 protons, respectively. The reaction

Scheme $\mathbf{2}^{a}$

${ }^{\circ}$

${ }^{a}$ Reagents: (a) CsF, $\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$; (b) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, EtOAc; (c) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
of $\mathbf{1 7}$ with meta-chloroperbenzoic acid in acetone gave the N -oxide 18, which was isolated as the hydrochloride salt in 85% yield. Treatment of the hydrochloride salt of $\mathbf{1 8}$ with acetic anhydride in dioxane was expecting to give the 4-acetoxymethyl or 4-hydroxymethyl compounds $\mathbf{1 9 a}$ and 19b, respectively. Surprisingly, 2-acetamido-4-chloromethyl-5-iodopyridine (19c) was isolated in 56% yield. Apparently, chloride ion displaced the acetoxy or hydroxy group from the expected 4 -acetoxymethyl or 4-hydroxymethyl intermediate to give 19c. Alkylation of 7-azabicyclo[2.2.1]hept-2-ene (20a), ${ }^{13}$ generated from tert-butoxycarbonyl-7-azabicyclo[2.2.1]hept-2-ene (20b) using trimethylsilyl iodide in chloroform, with 19c provided the N -alkylated product 21 in $\mathbf{4 3 \%}$ yield. Two possible approaches for the conversion of $\mathbf{2 1}$ to $\mathbf{2 2}$ were the Heck cyclization ${ }^{14-16}$ and a radical initiated cyclization. ${ }^{17,18} \mathrm{We}$ found that intramolecular cyclization of $\mathbf{2 1}$ using reductive Heck conditions similar to that used for intermolecular coupling ${ }^{19}$ (palladium diacetate, potassium formate, and tetrabutyl ammonium chloride in dimethylformamide at $90{ }^{\circ} \mathrm{C}$) provided the hexahydro-7,10-methanopyrrolo-2-[1,2-b]-2,6-naphthyridine 22 in 45% yield. Hydrolysis of $\mathbf{2 2}$ using refluxing 3 N hydrochloric acid gave a 90% yield of the 3 -amino analogue 23. Diazotization of $\mathbf{2 3}$ using sodium nitrite in concentrated hydrochloric acid yielded the desired epibatidine analogue 6 in 28% yield.

Bridged epibatidine analogue 7 was synthesized from 2-amino-6-methylpyridine (24) by a set of reactions exactly analogous to those used to prepare analogue $\mathbf{6}$ that proceeded through intermediate 24-30 (see Figure 1). The yield in each step was similar to the analogous step in the synthesis of $\mathbf{6}$.
4'-Methylepibatidine (32), 6'-methylepibatidine (34), and N-methylepibatidine (35) were synthesized as reference compounds for a comparison to the nAChR binding affinities of the bridged analogues 6 and 7. The synthesis of compounds 32 and 34 is shown in Scheme 4. Subjection of 20b to reductive Heck ${ }^{19}$ conditions using 2-amino-5-iodo-4-methylpyridine (36a) or 2-amino-5-iodo-6-methylpyridine (36b) provided the intermediates $\mathbf{3 1}$ and 33. Diazotization of $\mathbf{3 1}$ and $\mathbf{3 3}$ using sodium nitrite and concentrated hydrochloric acid yielded the desired 4^{\prime}-methyl- and 6'-methylepibatidine analogues 32 and 34, respectively. N-Methylepibatidine (35) was prepared as previously reported. ${ }^{20}$

The 5,6-benzofused ring epibatidine analogues $\mathbf{8 a}$ and $\mathbf{8 b}$ were synthesized as outlined in Scheme 5. Benzyne, generated by treating 2-trimethylsilyl trifluoromethanesulfonate (37) ${ }^{21-23}$ with cesium fluoride in acetonitrile, was added to tert-butyl 1 H -pyrrole-1-carboxylate (10) to give 38. Subjection of $\mathbf{3 8}$ to reductive Heck conditions using 2-amino-5-iodopyridine gave 39. Diazotization of $\mathbf{3 9}$ using sodium nitrite in concentrated hydrochloride acid yielded the desired 8a. Bromination of 39 provided 40. The palladium-acetate-catalyzed reaction of $\mathbf{4 0}$ with phenylboronic acid in dimethoxyethane in the presence of tri-(2-tolyl)phosphine and sodium carbonate gave the tert-butoxy-carbonyl-protected 2-amino-3-phenyl analogue 41. Diazotization of $\mathbf{4 1}$ using sodium nitrite in pyridine containing 70% hydrogen fluoride yielded the desired 2-fluoro-3-phenyl analogue $\mathbf{8 b}$.

2

6

35

42

43

Biology

The inhibition of $\left[{ }^{3} \mathrm{H}\right]$ epibatidine binding at $\alpha 4 \beta 2 \mathrm{nAChRs}$ and $\left[{ }^{125} \Gamma\right.$ iodo-MLA at α_{7} nAChRs, respectively, were conducted as previously reported. ${ }^{24}$ The epibatidine analogues were tested for their effects on body temperature and two pain models after acute administration as previously described. ${ }^{24}$ For the antagonist experiments, mice were pretreated s.c. with either saline or epibatidine analogues 10 min before nicotine. Nicotine was administered at a dose of $2.5 \mathrm{mg} / \mathrm{kg}$, s.c. (an ED_{84} dose), and mice were tested 5 min later. ED_{50} and AD_{50} values with 95% confidence limits were determined.

Results and Discussion

The key steps in the synthesis of the pyridine ring fused epibatidine analogues 3-5 and 8a-8b were the trapping of 2,3pyridyne, 2,4-pyridyne, and benzyne with tert-butyl 1-pyrrole-

Scheme 3^{a}

${ }^{a}$ Reagents: (a) $\mathrm{H}_{5} \mathrm{IO}_{6}, \mathrm{I} 2, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HOAc}, \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$; (b) MCPBA; (c) ethereal HCl ; (d) $\mathrm{Ac}_{2} \mathrm{O}$, dioxane; (e) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiI}, \mathrm{CHCl} 3$; (f) $\mathrm{NaOMe}, \mathrm{MeOH}$; (g) $\mathrm{HCO}_{2} \mathrm{~K}, \mathrm{Pd}(\mathrm{OAc})_{2},\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}$, DMF, $90{ }^{\circ} \mathrm{C}$; (h) 3 N HCl , reflux; (i) NaNO_{2}, concentrated HCl .

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{X}=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{H}$
25, $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{X}=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{I}$
26, $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{X}=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{I}$
27, $R=\mathrm{CH}_{2} \mathrm{Cl}, \mathrm{X}=\mathrm{NHCOMe}, \mathrm{Y}=\mathrm{I}$

Figure 1. Structures of starting material and intermediates used to synthesize 7.

Scheme 4^{a}

${ }^{a}$ Reagents: (a) 2-amino-5-iodo-4-methylpyridine (36a), $\mathrm{HCO}_{2} \mathrm{~K}, \mathrm{Pd}(\mathrm{OAc})_{2}$, $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right){ }_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}$, DMF, $120{ }^{\circ} \mathrm{C}$; (b) NaNO_{2}, concentrated HCl ; (c) 2-amino-5-iodo-6-methylpyridine $\left.(\mathbf{3 6 b}), \mathrm{HCO}_{2} \mathrm{~K}, \mathrm{Pd}(\mathrm{OAc})_{2},\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)\right)_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}$, DMF, $100^{\circ} \mathrm{C}$.

1-carboxalate to give intermediate compounds 11, 14, and $\mathbf{3 8}$ that could be modified using standard chemical techniques to provide the desired target compounds. The key steps in the synthesis of the bridged epibatidine analogues 6 and 7 were intramolecular reductive Heck cyclization of 21-22 and 28-29.

The inhibition of radioligand binding for the 2,3- and 3,4pyridine fused ring epibatidine analogues 3-5 and the 5,6benzene fused analogues $\mathbf{8 a} \mathbf{- 8 b}$ is given in Table 1. The pyridine-fused analogues $\mathbf{3}-\mathbf{5}$ displace less than 15% of the radioligand at $31.6 \mu \mathrm{M}$ for $\alpha_{4} \beta_{2} \mathrm{nAChRs}$ and have no affinity for α_{7} nAChRs (Table 1). Geometrically, the fused analogues 3 and 4 are quite different from epibatidine. The fixed nitrogen - nitrogen distance in the rigid analogues $\mathbf{3}$ and $\mathbf{4}$ (4.56 \AA) is near the low end of the range of corresponding distances

Scheme $\mathbf{5}^{a}$

${ }^{a}$ Reagents: (a) $\mathrm{CsF}, \mathrm{CH}_{3} \mathrm{CN}$; (b) 2-amino-5-iodopyridine, $\mathrm{HCO}_{2}{ }^{-} \mathrm{K}^{+}$, $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}, \mathrm{Pd}\left(\mathrm{Cl}_{2}\right)_{2}, \mathrm{DMF}, 60^{\circ} \mathrm{C}$; c) $\mathrm{Na}_{2} \mathrm{NO}_{2}$, concentrated HCl ; (d) $\mathrm{Br}_{2},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{HOAc}$; (e) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}(o \text {-tolyl })_{3}, \mathrm{DME}, \mathrm{H}_{2} \mathrm{O}$, $90^{\circ} \mathrm{C}$; (f) pyridine, $\mathrm{HF}, \mathrm{NaNO}_{2}$.
found in the conformations of epibatidine ($4.58-5.66 \AA$). The torsional angle (as measured between the azabicylo ring bridgehead atoms and the pyridinyl ring) is also different: for the fused analogues, this torsional angle is $\sim 0^{\circ}$, whereas the corresponding angle is either 70° or 256° for the two minimumenergy conformations of epibatidine. One could speculate that this is due to the fact that analogues $\mathbf{3}-\mathbf{5}$ do not possess a chloro substituent comparable to the 2^{\prime}-chloro group in epibatidine. However, this seems unlikely because deschloroepibatidine (42) has a $K_{\mathrm{i}}=0.02 \mathrm{nM}$ for the $\alpha_{4} \beta_{2} \mathrm{nAChR} .{ }^{25}$ It seems much more likely that these conformationally rigid analogues do not possess features required for the $\alpha_{4} \beta_{2}$ or $\alpha_{7} \mathrm{nAChR}$ pharmacophores.

Table 1. Radioligand Binding Data for Benzene- and Pyridine-Fused Epibatidine Analogues

| compound | X | Y | $\begin{array}{c}\alpha_{4} \beta_{2}\left[{ }^{3} \mathrm{H}\right] \text { epibatidine }\left(K_{\mathrm{i}}, \mathrm{nM}\right) \\ \text { or percent inhibition }\end{array}$ |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}\alpha_{7}\left[{ }^{125} \mathrm{I}\right] iodoMLA

percent inhibition\end{array}\right]\)| nicotine (2) | 1.50 ± 0.30 | |
| :--- | :--- | :--- |
| epibatidine (1) | 0.026 ± 0.002 | |
| $\mathbf{3}$ | $<15 \%$ at $31.6 \mu \mathrm{M}$ | 0% at 50 nM |
| $\mathbf{4}$ | $<15 \%$ at $31.6 \mu \mathrm{M}$ | 0% at 50 nM |
| $\mathbf{5}$ | $<15 \%$ at $31.6 \mu \mathrm{M}$ | 0% at 50 nM |
| $\mathbf{8 a}$ | 65.2 ± 7.2 | 0% at 50 nM |
| $\mathbf{8 b}$ | 128 ± 22 | 0% at 50 nM |

Table 2. Radioligand Binding Data for Bridged Ring Epibatidine Analogues

		 B				
compound	structure	X	Y	Z	R	$\begin{gathered} \alpha_{4} \beta_{2}\left[{ }^{3} \mathrm{H}\right] \text { epibatidine } \\ \left(K_{\mathrm{i}}, \mathrm{nM}\right) \end{gathered}$
(+)-epibatidine	C	Cl	H	H	H	0.026 ± 0.002
6	B	Cl				3330 ± 310
7	A	Cl				1260 ± 400
23	B	NH_{2}				12400 ± 900
30	A	NH_{2}				7370 ± 1240
32	C	Cl	CH_{3}	H	H	17.2 ± 2.2
34	C	Cl	H	CH_{3}	H	256 ± 74
35	C	Cl	H	H	CH_{3}	0.038 ± 0.003^{a}

${ }^{a}$ Ref 20 reports a $K_{\mathrm{i}}=0.027 \mathrm{nM}$.
Even so, the information from the study of these compounds does help further define $n A C h R$ pharmacophores.

The 5,6-benzo fused epibatidine analogue $\mathbf{8 a}$ has a $K_{\mathrm{i}}=65.2$ nM at the $\alpha_{4} \beta_{2} \mathrm{nAChR}$ and has no affinity for the $\alpha_{7} \mathrm{nAChR}$. The most likely explanation for the low binding affinity of $\mathbf{8 a}$ compared to epibatidine is that the nAChRs cannot accommodate the extra steric bulk added to the 5,6 position. In earlier studies, we showed that 2^{\prime}-fluoro- 3^{\prime}-phenyldeschloroepibatidine (43) had a $K_{\mathrm{i}}=0.24 \mathrm{nM}$ at the $\alpha_{4} \beta_{2}$ nAChR. The 5,6-benzo analogue 8b has a $K_{\mathrm{i}}=128 \mathrm{nM},{ }^{26}$ again showing that steric bulk is not allowed in the 5,6 position.

The bridged epibatidine analogues 6 and 7 have K_{i} values of 3330 and 1260 nM , respectively, for the $\alpha_{4} \beta_{2} \mathrm{nAChR}$ (Table 2). Compounds 6 and 7 can be viewed as conformationally locked analogues of epibatidine and are comparable to the two principal low-energy conformations of the freely rotating pyridine ring in epibatidine. ${ }^{27-30}$ It has been suggested that the pharmacologically significant conformation of epibatidine is the global energy minimum conformation. ${ }^{31-33}$ In the "syn" conformation of epibatidine, the $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N}$ dihedral angle is $\sim 42^{\circ}$, while in compound 7 , the corresponding dihedral angle is $\sim 43^{\circ} .{ }^{34}$ In the "anti" conformation of epibatidine, the $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N}$ dihedral angle is $\sim 133^{\circ}$, while in compound 6 , the corresponding dihedral angle is $\sim 138^{\circ}$. The nitrogen - nitrogen distances are somewhat shorter in the bridged analogues than in the corresponding epibatidine conformations (3.8 versus 4.6 \AA for compound 7/"syn" epibatidine pair and 5.1 versus $5.6 \AA$ for compound 6/"anti" epibatidine pair). However, the nitrogennitrogen distance for compound 6 in particular is within the 4.5-5.5 \AA range that has been proposed by several authors for the nicotinic pharmacophore. ${ }^{27-30}$

Thus, even though the analogues 6 and/or 7 possess several of the structural features in proposed pharmacophores for the $\alpha_{4} \beta_{2} \mathrm{nAChR}$, they did not show high affinity for this receptor site. To determine if the bridged ring epibatidine analogues $\mathbf{6}$, 7, 23, or $\mathbf{3 0}$ might be allosteric modulators of the nAChR
system, the compounds were evaluated for their in vivo nicotinic pharmacological properties in mice (Table 3). Consistent with the lack of affinity for the $\alpha_{4} \beta_{2}$ receptor, the compounds possessed no antinociceptive activity in the tail-flick or hotplate tests or significantly changed body temperature.

One could speculate that the reason for the low binding affinity of the bridged analogues $\mathbf{6}$ and $\mathbf{7}$ is that they have an extra 4^{\prime} - and 6^{\prime}-methylene substituents not present in epibatidine. Alternatively, compounds 6 and 7 could be viewed as N substituted analogues of epibatidine. To gain information on this possible explanation, we synthesized and evaluated the $\alpha_{4} \beta_{2}$ nAChR binding affinity of the 4^{\prime}-methyl-, 6^{\prime}-methyl-, and N-methylepibatidine analogues $\mathbf{3 2}, \mathbf{3 4}$, and $\mathbf{3 5}$, respectively. The 4^{\prime}-methyl and 6-methyl analogues have K_{i} values of 17.2 and 256 nM , respectively (Table 2). Thus, it seems unlikely that the extra methylene substituents in $\mathbf{6}$ and $\mathbf{7}$ play a major part in their low $\alpha_{4} \beta_{2}$ nAChR affinity. Because N-methylepibatidine has a $K_{\mathrm{i}}=0.038 \mathrm{nM}$ at the $\alpha_{4} \beta_{2} \mathrm{nAChR}$, apparently N substitution does not contribute to the low affinity of the bridged analogues 6 and 7. Compounds 32, 34, and 35 were also evaluated for their in vivo nicotinic pharmacological properties (Table 3). Compound 35 has an $\mathrm{ED}_{50}=0.004 \mathrm{mg} / \mathrm{kg}$ in the tail-flick test, which is consistent with the previously reported value of $0.009 \mathrm{mg} / \mathrm{kg} .{ }^{35}$ It also had an ED_{50} of $0.003 \mathrm{mg} / \mathrm{kg}$ in both the hot-plate and hypothermia tests. Surprisingly, Nmethylepibatidine also blocked nicotine-induced antinociception in the tail-flick test with a very high potency $\left(\mathrm{AD}_{50}=0.048\right.$ $\mu \mathrm{g} / \mathrm{kg}$), which is 90 times greater than its agonist activity. Compounds $\mathbf{3 2}$ and $\mathbf{3 4}$ blocked the analgesic effects of nicotine in the tail-flick test with a potency that correlates with their affinity in the $\left[{ }^{3} \mathrm{H}\right]$ epibatidine binding assay. Only compound 32 blocked nicotinic effects in the hot-plate test.

In summary, methods were developed for the synthesis of three epibatidine analogues (3-5), which have the pyridine ring annotated to the 3,4 position of the 7 -azabicyclo[2.2.1]heptane ring, and two analogues ($\mathbf{6}$ and 7), which have a 2^{\prime}-chloropyridine ring bridged to the 7 position of the 7 -azabicyclo[2.2.1]heptane ring via a methylene group. Similar to previously reported conformationally restricted epibatidine analogues, ${ }^{36,37}$ compounds 3-7 possessed low affinity for the nAChR relative to that for epibatidine and did not show any activity in the nicotinic pharmacological test in mice. Nevertheless, results from this study provide valuable information concerning the pharmacophore for nAChRs. In addition, we developed a new synthesis of an epibatidine analogue (8a) possessing a benzene ring fused to the 5,6 position on the 7 -azabicyclo[2.2.1]heptane ring. We found that $8 \mathbf{8 a}$ possessed low affinity for nAChRs, which is in contrast to a reported value. ${ }^{8}$ Results from this study show that these structures do not encompass the ideal conformation for high affinity to the nAChRs. The fact that the nitrogen-nitrogen distance in the analogues are within the range generally required for receptor recognition suggests that directionality of the nitrogen lone pair of epibatidine's 7 -amino group or steric hindrance may explain their lack of nAChR binding affinity. Surprisingly, N-methyepibatidine is a potent mixed agonist/antagonist.

Experimental Section

Melting points were determined on a Mel-temp (Laboratory Devices, Inc.) capillary tube apparatus. NMR spectra were recorded on a Bruker Avance 300 or AMSX 500 spectrometer using tetramethylsilane as an internal standard. Thin-layer chromatography was carried out on Whatman silica gel 60 plates. Visualization was accomplished under UV or in an iodine chamber. Microanalysis was carried out by Atlantic Microlab, Inc. Flash chromatography

Table 3. Pharmacological Data for Epibatidine Analogues

compound	$\begin{aligned} & \mathrm{ED}_{50} \mathrm{mg} / \mathrm{kg} \\ & \text { tail flick } \end{aligned}$	$\begin{aligned} & \mathrm{ED}_{50} \mathrm{mg} / \mathrm{kg} \\ & \text { hot plate } \end{aligned}$	$\mathrm{ED}_{50} \mathrm{mg} / \mathrm{kg}$ hypothermia	$\mathrm{AD}_{50}(\mu \mathrm{~g} / \mathrm{kg})$		
				tail flick	hot plate	body temperature
1	0.006	0.004	0.004			
6	2% at 10	18% at 10	0\% at 10			
7	3% at 10	17% at 10	0% at 10			
23	2% at 10	16% at 10	0% at 10			
30	4% at 10	10% at 10	0% at 10			
32	4% at 10	20% at 10	0\% at 10	400 (300-600)	1200 (1000-1800)	0% at 5000
34	1% at 10	14% at 10	0% at 10	9000 (8600-9600)	10% at 15000	0% at 15000
35	0.0044 (0.002-0.006)	0.003 (0.001-0.004)	0.003 (0.002-0.006)	0.048 (0.01-0.17)	23% at 0.5	0% at 0.5

was carried out using silica gel 60 (230-400 mesh). CMA80 is $80 \% \mathrm{CHCl}_{3}-18 \% \mathrm{CH}_{3} \mathrm{OH}-2 \% \mathrm{NH}_{4} \mathrm{OH}$.

The $\left[{ }^{3} \mathrm{H}\right]$ epibatidine was purchased from Perkin-Elmer Inc. (Boston, MA). The $\left[{ }^{125} I\right]$ iodo-MLA was synthesized as previously reported. ${ }^{38}$

4-(Triethylsilyl)pyridin-3-yl Trifluoromethanesulfonate (9). The title compound was synthesized by a modification of the reported method. ${ }^{10}$ Diethylcarbamoyl chloride ($74.9 \mathrm{~mL}, 552 \mathrm{mmol}$) was added to a stirred, cold $\left(0^{\circ} \mathrm{C}\right)$ solution of 3-hydroxypyridine $(50.0 \mathrm{~g}, 0.526 \mathrm{~mol})$ in 263 mL of pyridine. The solution warmed to room temperature overnight. Water was added, and the mixture was extracted with ether. The combine ether extracts were washed with 10% aqueous sodium carbonate solution and brine, dried with magnesium sulfate, filtered, and evaporated to yield $92.3 \mathrm{~g}(90 \%)$ of pyridin-3-yl diethylcarbamate as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta: 8.44(\mathrm{dd}, J=1.5,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H})$, $3.46(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 153.5$, 148.2, 146.2, 143.6, 129.3, 123.6, 42.4, 42.0, 14.2, 13.3.

Lithium diisopropylamide $[85.0 \mathrm{~mL}, 170 \mathrm{mmol}, 2 \mathrm{M}$ solution in tetrahydrofuran (THF)] was added dropwise over 15 min to a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $30.0 \mathrm{~g}(0.154 \mathrm{~mol})$ of the compound above in 309 mL of THF. The reaction mixture was stirred for 25 min , at which time chlorotriethylsilane $(170 \mathrm{~mL}, 170 \mathrm{mmol}, 1 \mathrm{M}$ solution in THF) was added dropwise over 15 min . The solution was allowed to warm to room temperature overnight. Water was added, and the mixture was extracted with ether. The combined ether extracts were washed with brine, dried with magnesium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 50% ethyl acetate in hexanes provided $42.7 \mathrm{~g}(90 \%)$ of 4-(triethylsilyl)pyridin-3-yl diethylcarbamate as a clear crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.39(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33$ (s, 1H), $7.33(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~m}, 9 \mathrm{H}), 0.85(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $154.0,153.1,145.3,144.3,138.8,129.7,42.2,41.8,14.3,13.3$, 7.4, 3.2.

Methanol (50 mL) was added to a solution of $40.1 \mathrm{~g}(0.130 \mathrm{~mol})$ of the above compound in 300 mL of 25% sodium methoxide in methanol. The solution was stirred at room temperature overnight. Hydrochloric acid (10%) was added dropwise, and the mixture was extracted with ether. The combined ether extracts were washed with brine, dried with magnesium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 50% ethyl acetate in hexanes provided $21.6 \mathrm{~g}(80 \%)$ of 4-triethylsilyl)pyridin-3-ol as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 11.8(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:$ $160.5,138.6,135.5,135.4,131.2,7.8,3.3$.

Trifluoromethanesulfonic anhydride ($18.8 \mathrm{~mL}, 112 \mathrm{mmol}$) was added dropwise over 10 min to a cooled $\left(0^{\circ} \mathrm{C}\right)$, stirred solution of $21.3 \mathrm{~g}(0.102 \mathrm{~mol})$ of the above compound in 102 mL of pyridine. The reaction mixture was allowed to warm to room temperature overnight. Water was added, and the mixture was extracted with ether. The combined ether extracts were washed with brine, dried with magnesium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 10% ethyl acetate in hexanes provided $23.5 \mathrm{~g}(68 \%)$ of 9 as a clear, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $8.61(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$0.95(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 152.6,148.3,141.5,140.7$, $131.3,119.0(\mathrm{~d}, J=320 \mathrm{~Hz}), 7.8,3.3$.
tert-Butyl 5,8-Dihydro-5,8-epiminoisoquinoline-9-carboxylate (11). Anhydrous cesium fluoride ($20.9 \mathrm{~g}, 0.138 \mathrm{~mol}$) was added to a stirred solution of 4-triethylsilylpyridin-3-yl trifluoromethanesulfonate $(9,23.5 \mathrm{~g}, 0.07 \mathrm{~mol})$ and t-butyl 1-pyrrole-1-carboxylate $(10,57.5 \mathrm{~g}, 0.344 \mathrm{~mol})$ in 69 mL of anhydrous acetonitrile. The solution was allowed to stir overnight at room temperature. Water was added, and the mixture was extracted with ether. The combined ether extracts were washed with brine, dried with magnesium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 50% hexanes in ethyl acetate afforded 6.3 g of an orange oil. Distillation of the oil at $95-100^{\circ} \mathrm{C}(0.067$ torr $)$ provided 4.72 g (28%) of $\mathbf{1 1}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.46(\mathrm{~s}, 1 \mathrm{H})$, $8.29(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, $5.58(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}) 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 158.1$, 154.7, 147.5, 143.8, 142.9, 142.0, 140.4, 116.7, 81.2, 65.9, 64.6, 28.1.

5,8-Dihydro-5,8-iminoisoquinoline (3). Ice-cold concentrated hydrochloric acid (10 mL) was added to a stirred solution of $\mathbf{1 1}$ ($400 \mathrm{mg}, 1.64 \mathrm{mmol}$) in 2.0 mL of methanol cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Concentrated ammonium hydroxide (15 mL) was added dropwise, and the product was extracted with chloroform. The chloroform extracts were combined, dried with sodium sulfate, and evaporated. Flash chromatography over silica gel with 5% methanol in ethyl acetate provided 165 mg (70%) of $\mathbf{3}$ as a clear, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(5,1 \mathrm{H}), 6.98(5,1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H})$, 3.11 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 147.0,145.3,143.7,140.3$, 116.6, 66.0, 64.4 ppm . Anal. Calcd $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)$: C, H, N.
tert-Butyl 5,6,7,8-Tetrahydro-5,8-epiminoisoquinoline-9-carboxylate (12). Compound $11(500 \mathrm{mg}, 2.05 \mathrm{mmol})$ was weighed in a Parr vessel and diluted with 35 mL of ethyl acetate. Palladium (10%) on carbon (100 mg) was added, and the solution was hydrogenated at 30 psi for 14 h . The catalyst was removed by filtration over celite, and the ethyl acetate was evaporated to yield $410 \mathrm{mg}(81 \%)$ of 12 as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.45(\mathrm{~s}$, $1 \mathrm{H}), 8.38(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}$, $1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 155.4,153.8,148.8,140.9,140.6,115.5,81.0$, 61.0, 59.6, 28.5, 26.8, 26.2.

5,6,7,8-Tetrahydro-5,8-iminoisoquinoline (4). Ice-cold concentrated hydrochloric acid (3 mL) was added to a stirred, $0^{\circ} \mathrm{C}$ solution of $\mathbf{1 2}(190 \mathrm{mg}, 0.771 \mathrm{mmol})$ in 2.0 mL of methanol. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Concentrated ammonium hydroxide (5 mL) was added dropwise, and the product was extracted with chloroform. The chloroform extracts were combined, dried with sodium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 50% methanol in ethyl acetate provided $60.0 \mathrm{mg}(53 \%)$ of a clear, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta: 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.08(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 157.4,148.2$, 144.1, 140.4, 115.3, 61.0, 59.3, 26.5, 26.0. To a stirred, $0^{\circ} \mathrm{C}$ solution of the free amine ($60.0 \mathrm{mg}, 0.410 \mathrm{mmol}$) in methylene chloride was added hydrochloric acid in ether ($1.0 \mathrm{~mL}, 1.01 \mathrm{mmol}, 1 \mathrm{M}$). The solution was stirred for 2 h while warming to room tempera-
ture. The solution was evaporated, and the resulting solid was dried on the vacuum pump. Recrystallization from methanol-ether provided $62 \mathrm{mg}(73 \%)$ of $4 \cdot \mathrm{HCl}$ as small, white needles. Anal. Calcd $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2}\right)$: C, H, N.

3-Trimethylsilyl-2-pyridyl Trifluoromethanesulfonate (13). The title compound was prepared by modification of the reported method. ${ }^{12}$ Lithium diisopropylamide ($2 \mathrm{M}, 231 \mathrm{~mL}, 463 \mathrm{mmol}$) was added dropwise over 15 min to a stirred, $0^{\circ} \mathrm{C}$ solution of 20.0 g (0.210 mol) of 2-hydroxypyridine in 500 mL of THF under nitrogen. The solution was stirred for 5 min at $0^{\circ} \mathrm{C}$ and for 1 h while warming to room temperature. The solution was again placed in an ice bath, and chlorotrimethylsilane ($29.3 \mathrm{~mL}, 231 \mathrm{mmol}$) was added over 10 min to the solution. After stirring 5 min longer at $0^{\circ} \mathrm{C}$, the solution was allowed to stir overnight at room temperature. The THF was evaporated, and ethyl acetate was added. The ethyl acetate was filtered and evaporated. Flash chromatography over silica gel with ethyl acetate yielded $23.4 \mathrm{~g}(67 \%)$ of 3-trimethylsilyl-2hydroxypyridine as an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 12.4$ (br s, 1H), $7.54(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 167.7,147.5$, 135.5, 132.1, 106.7, -1.6.

To a stirred, ice-cold solution of 3-trimethylsilyl-2-hydroxypyridine ($5.56 \mathrm{~g}, 0.033 \mathrm{~mol}$) in 33 mL of pyridine under nitrogen was added dropwise trifluoromethanesulfonic anhydride (6.15 mL , $36.6 \mathrm{mmol})$. The solution was allowed to stir at room temperature overnight. The solvent was evaporated, and ether and water were added. The ether extracts were washed with brine, dried with magnesium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 5% ethyl acetate in hexanes provided 9.50 g (96%) of $\mathbf{1 3}$ as a clear, colorless oi1. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.32$ (dd, $J=1.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.92 (dd, $J=1.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (dd, $J=4.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 161.1$, $149.0,147.1,125.4,123.4,120.8,118.7\left(\mathrm{~d}, J_{\mathrm{cf}}=317 \mathrm{~Hz}\right),-1.4$.
tert-Butyl 5,8-Dihydro-5,8-epiminoquinoline-9-carboxylate (14). Cesium fluoride ($30.0 \mathrm{~g}, 0.198 \mathrm{~mol}$) was added to a stirred solution of $13(29.6 \mathrm{~g}, 0.099 \mathrm{~mol})$ and tert-butyl 1-pyrrolecarboxylate ($82.6 \mathrm{~g}, 0.494 \mathrm{~mol}$) in 100 mL of acetonitrile at room temperature. The reaction was allowed to stir overnight. Water was added, and the reaction mixture was extracted with ethyl acetate. The ethyl acetate fractions were combined, washed with brine, dried with magnesium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 20% ethyl acetate in hexanes provided 6.6 g of a bright yellow solid. Distillation at $90{ }^{\circ} \mathrm{C}(0.054$ torr $)$ provided $3.4 \mathrm{~g}(14 \%)$ of $\mathbf{1 4}$ a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $8.02(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $6.84(\mathrm{dd}, J=5.4,7.2,1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 171.5,154.9,143.6,141.6,126.9,119.3$, 81.2, 67.6, 65.4, 28.1.

This product was used in the next step without further purification.
tert-Butyl 5,6,7,8-Tetrahydro-5,8-epiminoquinoline-9-carboxylate (15). Compound 14 ($476 \mathrm{mg}, 1.95 \mathrm{mmol}$) was weighed in a Parr vessel and diluted with 35 mL of ethyl acetate. Palladium (10%) on carbon (100 mg) was added, and the solution was hydrogenated at 30 psi for 15 h . The catalyst was removed by filtration over celite, and the ethyl acetate was evaporated to yield $434 \mathrm{mg}(91 \%)$ of $\mathbf{1 4}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.27$ (dd, $J=1.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, $J=$ $5.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=3.9,1 \mathrm{H})$, $2.18(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H})$.

This product was used in the next step without further purification.
3,11-Diazatricyclo[6.2.1.0 ${ }^{2,7}$]undeca-2(7),3,5-triene (5) Dihydrochloride. Trifluoroacetic acid (2 mL) was added to a stirred, -9 ${ }^{\circ} \mathrm{C}$ solution of $15(450 \mathrm{mg}, 1.83 \mathrm{mmol})$ in 2.0 mL of methylene chloride. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and 2 h while warming to room temperature. Concentrated ammonium hydroxide (3 mL) was added dropwise, and the product was extracted with methylene chloride. The methylene chloride extracts were combined, washed with brine, dried with sodium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 50% methanol in ethyl acetate provided 160 mg (60%) of 5 as a
clear, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.20(\mathrm{dd}, J=1.5,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=5.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ $(\mathrm{d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=3.9,1 \mathrm{H}), 2.4(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.12(\mathrm{~m}$, $2 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 169.6,146.4,141.6,126.8$, $121.2,62.1,60.4,26.9,25.2$. To a stirred, $0^{\circ} \mathrm{C}$ solution of the free amine ($21.5 \mathrm{mg}, 0.147 \mathrm{mmol}$) in methylene chloride was added hydrochloric acid in ether ($1.5 \mathrm{~mL}, 1.47 \mathrm{mmol}, 1 \mathrm{M}$). The solution was evaporated, and the resulting solid was dried on the vacuum pump. Recrystallization from methanol-ether provided 31.4 mg (98%) of the dihydrochloride salt. mp $175.5^{\circ} \mathrm{C}$ (decomp). Anal. Calcd $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2}\right)$: C, H, N.

2-Amino-5-iodo-4-methylpyridine (17). Compound 16 (27.0 g, 0.25 mol) was mixed with periodic acid ($11.4 \mathrm{~g}, 0.050 \mathrm{~mol}$), HOAc $(150 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{SO}_{4}(4.5 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. Iodine ($25.4 \mathrm{~g}, 0.10$ mol) was added, and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h . The mixture was cooled and poured into $\mathrm{H}_{2} \mathrm{O}$ containing 40 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The reaction mixture was decanted from a reddish oil, and the filtrate was basified with $50 \% \mathrm{NaOH}$. The resulting solids were extracted with diethyl ether $(2 \times 300 \mathrm{~mL})$. The ether layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The solids were recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ to afford $\mathbf{1 7}(41.8 \mathrm{~g}, 71 \%)$ as a tan solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.23$ (s, 3H), 4.35 (br s, 2H), 6.46 ($\mathrm{s}, 1 \mathrm{H}$), 8.27 ($\mathrm{s}, 1 \mathrm{H}$).
2-Amino-5-iodo-4-methylpyridine- N-oxide (18) Hydrochloride. To compound $\mathbf{1 7}(29.6 \mathrm{~g}, 0.13 \mathrm{~mol})$ in acetone (200 mL) was added meta-chloroperbenzoic acid ($50-55 \%, 48.3 \mathrm{~g}$) in acetone (100 mL). The reaction was stirred at room temperature for 90 min and then concentrated in vacuo. The residue was dissolved in CHCl_{3} and stirred while adding 2 M ethereal $\mathrm{HCl}(100 \mathrm{~mL})$. The mixture was filtered, and the salt was recrystallized from EtOH-diethyl ether to yield $\mathbf{1 8}$ hydrochloride ($30.8 \mathrm{~g}, 85 \%$) as a tan solid. mp $198-200{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta: 2.34(\mathrm{~s}, 3 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H})$, 8.39 (br s, 3H), 8.74 (s, H).

2-Acetamido-4-chloromethyl-5-iodopyridine (19c). Acetic anhydride ($2.4 \mathrm{~g}, 0.023 \mathrm{~mol}$) was added to a heterogeneous mixture of $\mathbf{1 8} \cdot \mathrm{HCl}(3.0 \mathrm{~g}, 0.0105 \mathrm{~mol})$ in dioxane $(50 \mathrm{~mL})$. The reaction mixture was stirred at reflux for 17 h . The resulting dark brown mixture was concentrated in vacuo, and the residue was partitioned between $5 \% \mathrm{NaHCO}_{3}$ solution and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was dissolved in EtOAc and passed through a plug of silica gel. The filtrate was concentrated to give 2.9 g of a tan solid. The resulting product was purified by flash chromatography on silica gel using 75% hexane-acetone, as the eluent, to yield 19c (1.82 $\mathrm{g}, 56 \%)$ as a beige solid. $\mathrm{mp} 173-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $2.22(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 7.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}$, 1H).

7-Azabicyclo[2.2.1]hept-2-ene (20a). Iodotrimethylsilane (4.84 $\mathrm{g}, 0.024 \mathrm{~mol}$) was added to a solution of 7-(tert-butoxy) carbonyl-7-azabicyclo[2.2.1]hept-2-ene ${ }^{1}$ (20b, $3.9 \mathrm{~g}, 0.02 \mathrm{~mol}$) in 150 mL of CHCl_{3}. The reaction mixture was stirred at room temperature for 1 h , quenched with $\mathrm{MeOH}(3.1 \mathrm{~g}, 0.097 \mathrm{~mol})$, and concentrated. The residue was triturated with ether to give 20a ($3.26 \mathrm{~g}, 73 \%$) as a tan solid. mp 184-185 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.45(\mathrm{dd}, J=$ $3.6,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 2 \mathrm{H}), 7.95$ (br s, 1H).
N-[4-(7-Azabicyclo[2.2.1]hept-2-en-7-yl)methyl-5-iodo-2-py-ridin-2-yl] Acetamide (21). To NaOMe ($0.26 \mathrm{~g}, 0.0045 \mathrm{~mol}$) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added 20a ($1.0 \mathrm{~g}, 0.0045 \mathrm{~mol}$) followed by $19 \mathrm{c}(1.29 \mathrm{~g}, 0.0044 \mathrm{~mol})$. The reaction mixture was stirred at reflux for 18 h then concentrated in vacuo. The solid residue was triturated with CHCl_{3}, filtered, and concentrated. The solids were purified by silica gel column chromatography using EtOAc-hexane (1:1) as the eluent to give $21(0.50 \mathrm{~g}, 43 \%)$ as a beige solid. mp 130-132 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.03(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H})$, 8.34 (s, 1H), 8.44 ($\mathrm{s}, 1 \mathrm{H}$).

This product was used in the next step without further purification.
N-(5,7,8,9,9a, 10-Hexahydro-7,10-methanopyrrolo[1,2-b][2,6]naphthyridin-3-yl)acetamide (22). To N, N-dimethylformamide ($\mathrm{DMF}, 10 \mathrm{~mL}$) in a closed reaction vessel was added
compound $21(1.60 \mathrm{~g}, 0.0043 \mathrm{~mol}), \mathrm{HCO}_{2} \mathrm{~K}(0.36 \mathrm{~g}, 0.0043 \mathrm{~mol})$, tetrabutylammonium chloride ($0.31 \mathrm{~g}, 0.0043 \mathrm{~mol}$), and palladium (II) acetate $(0.047 \mathrm{~g}, 0.00021 \mathrm{~mol})$. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 19 h and cooled, and brine (100 mL) and EtOAc (100 $\mathrm{mL})$ were added followed by $\mathrm{NH}_{4} \mathrm{OH}(50 \mathrm{~mL})$. The mixture was filtered, and the organic layer was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give solids. The solids were purified by silica gel column chromatography using CMA80-hexane- $\operatorname{EtOAc}(2: 1: 1)$ as the eluent to afford $22(0.45 \mathrm{~g}, 45 \%)$ as a beige solid. $\mathrm{mp} 204-205{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.34(\mathrm{~m}, 1 \mathrm{H})$, $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{~d}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 11 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{br} \mathrm{s}$, $1 \mathrm{H})$.
5,7,8,9,9a,10-Hexahydro-7,10-methanopyrrolo[1,2$\boldsymbol{b}][\mathbf{2 , 6}]$ naphthyridin-3-amine (23). Compound 22 ($1.10 \mathrm{~g}, 0.0045$ $\mathrm{mol})$ was stirred at reflux in $3 \mathrm{~N} \mathrm{HCl}(400 \mathrm{~mL})$ for 7 h . The reaction was cooled, basified with solid NaOH , and extracted with CHCl_{3} $(2 \times 200 \mathrm{~mL})$. The combined CHCl_{3} extracts were washed with brine, separated, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent gave $23(0.82 \mathrm{~g}, 90 \%)$ as a cream-colored solid. $\mathrm{mp} 149-152{ }^{\circ} \mathrm{C}$. The hydrochloride salt obtained by adding an ethereal HCl solution to a solution of the free base in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ had an mp of $283-286{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (base, CDCl_{3}) $\delta: 1.46-1.88(\mathrm{~m}, 6 \mathrm{H}), 2.81(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (d, $J=19 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.24$ $(\mathrm{s}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd (di-HCl salt) $\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right)$: C, H,N.

3-Chloro-5,7,8,9,9a,10-hexahydro-7,10-methanopyrrolo[1,2$\boldsymbol{b}][\mathbf{2 , 6}]$ naphthyridine (6). $\mathrm{NaNO}_{2}(3.1 \mathrm{~g}, 0.045 \mathrm{~mol})$ was added to compound $23(0.65 \mathrm{~g}, 0.0032 \mathrm{~mol})$ in $12 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ at ice bath temperatures, and the mixture was stirred for 30 min and then at room temperature for 2 h . The mixture was added to $\mathrm{NH}_{4} \mathrm{OH}$ (40 mL), extracted with $\mathrm{CHCl}_{3}(2 \times 100 \mathrm{~mL})$, separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography using CMA80-hexane-EtOAc (2:1:1) as the eluent to afford $\mathbf{6}(0.20 \mathrm{~g}, 28 \%)$ as a beige solid. mp 138-139 ${ }^{\circ} \mathrm{C} .{ }^{1}{ }^{\mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.34-1.95(\mathrm{~m}, 6 \mathrm{H}), 2.92(\mathrm{~d}, J=6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.08(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=$ $19 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2}\right)$: C, H, N.
2-Amino-5-iodo-6-methylpyridine (25). Compound 25 was prepared from 2-amino-6-methylpyridine 23 by a procedure similar to that used for $\mathbf{1 7}$ to afford 49% of $\mathbf{2 5}$ as a beige solid. mp 100-102 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.54(\mathrm{~s}, 3 \mathrm{H}), 4.54(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.17(\mathrm{~d}, J$ $=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$.

This product was used in the next step without further purification.
2-Amino-5-iodo-6-methylpyridine-N-oxide (26) Hydrochloride. The title compound was prepared from 25 following the same procedure used for $\mathbf{1 8}$ to yield 26 , as a copper-colored solid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OH}$) $\delta: 2.54(\mathrm{~s}, 3 \mathrm{H}), 4.95(\mathrm{bs}, 3 \mathrm{H}), 6.22(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.
2-Acetamido-6-chloromethyl-5-iodopyridine (27). Using a procedure analogous to that described for 19c, an overall 82% yield of 27 from 26 was obtained as a tan solid. mp $146-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.21(\mathrm{~s}, 3 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{br} \mathrm{s}, \mathrm{H}), 7.94(\mathrm{~s}$, $1 \mathrm{H}), 8.04(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$.
N-[6-(7-Azabicyclo[2.2.1]hept-2-en-7-yl)methyl-5-iodopyridin-2-yl] Acetamide (28). Using a procedure analogous to that described for 21 gave an 81% yield of $\mathbf{2 8}$ as a beige solid. mp $128-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.96(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{~s}$, $2 \mathrm{H}), 7.82$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.98 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.84$ (br $\mathrm{s}, 1 \mathrm{H}$).
N-(5,5a,6,7,8,10-hexahydro-5,8-methanopyrrolo [2,1$g][1,7]$ naphthyridin-2-yl)acetamine (29). Using a procedure analogous to that described for $\mathbf{2 2}$ gave a 43% yield of $\mathbf{2 9}$ as a tan solid. $\mathrm{mp} 129-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.33(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.88(\mathrm{~m}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, 1 \mathrm{H})$,
3.53 (t, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=19$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.61$ (br $\mathrm{s}, 1 \mathrm{H}$).

5,5a, 6, 7, 8, 10-Hexahydro-5,8-methanopyrrolo [2,1$g][1,7]$ napthyridin-2-amine (30). Using a procedure analogous to that described for $\mathbf{2 3}$ afforded a 61% yield of $\mathbf{3 0}$ as a white solid. $\mathrm{mp}\left(\mathrm{HCl}\right.$ salt) $201-206{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (base, CDCl_{3}) $\delta: 1.29-1.86$ $(\mathrm{m}, 6 \mathrm{H}), 2.73(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}$, $J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H})$, 4.29 (br s, 2H), $6.21(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$.

2-Chloro-5,5a,6,7,8,10-hexahydro-5,8-methanopyrrolo[2,1$g][1,7]$ naphthyridine (7). Using a procedure analogous to that described for $\mathbf{6}$ gave a 32% yield of $\mathbf{7}$ as a white solid. mp 127-129 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.33-1.89(\mathrm{~m}, 6 \mathrm{H}), 2.88(\mathrm{~d}, J=6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.17$ (d, $J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=$ $19 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Calcd $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.
tert-Butyl 2-(6-Amino-4-methylpyridin-3-yl)-7-azabicyclo-[2.2.1]heptane-7-carboxylate (31). To DMF (10 mL) in a closed reaction vessel was added 2-amino-5-iodo-4-methylpyridine (36a, $3.60 \mathrm{~g}, 0.015 \mathrm{~mol}$), compound $20 \mathrm{~b}(1.5 \mathrm{~g}, 0.0077 \mathrm{~mol}), \mathrm{HCO}_{2} \mathrm{~K}$ $(1.30 \mathrm{~g}, 0.015 \mathrm{~mol})$, tetrabutylammonium chloride $(0.53 \mathrm{~g}, 0.0019$ $\mathrm{mol})$, and palladium (II) acetate ($0.094 \mathrm{~g}, 0.00042 \mathrm{~mol}$). The reaction was stirred at $120{ }^{\circ} \mathrm{C}$ for 17 h and cooled, and EtOAc $(200 \mathrm{~mL})$ was added followed by $\mathrm{NH}_{4} \mathrm{OH}(200 \mathrm{~mL})$. The organic layer was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give $\mathbf{3 1}$ as a solid. The solid was purified by silica gel column chromatography using $80 \% \mathrm{EtOAc}-\mathrm{MeOH}$ as the eluent to yield $0.25 \mathrm{~g}(11 \%)$ of $\mathbf{3 1}$ as a tan solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta: 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.56(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.95(\mathrm{~m}, 5 \mathrm{H}), 2.16$ (s, 3H), $2.86(\mathrm{~m}, 1 \mathrm{H}), 4.23$ (bd, 2H), 4.35 (bs, 1H), 6.33 (s, H), 8.04 (s, 1H).

2-(6-Chloro-4-methylpyridin-3-yl)-7-azabicyclo[2.2.1]heptane (32). $\mathrm{NaNO}_{2}(5.3 \mathrm{~g}, 0.077 \mathrm{~mol})$ was added to compound $\mathbf{3 1}$ (1.30 $\mathrm{g}, 0.0043 \mathrm{~mol})$ in $12 \mathrm{~N} \mathrm{HCl}(14 \mathrm{~mL})$ at ice bath temperatures. The reaction mixture was stirred at ice bath temperatures for 30 min and then at room temperature for 2 h . The mixture was added to $\mathrm{NH}_{4} \mathrm{OH}(75 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(2 \times 100 \mathrm{~mL})$. The CHCl_{3} layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography using CMA80-hexane-EtOAc (2:1:1) as the eluent to afford 0.35 g (40%) of $\mathbf{3 2}$ as an orange oil. The HCl salt was prepared by dissolving the free base in ether and adding ethereal HCl to give solids that were crystallized from $\mathrm{MeOH}-\mathrm{EtOAc}$ mixtures to yield the hydrochloride as a white solid. mp $120-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, free base) $\delta: 1.51-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~m}$, $1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd ($\left.\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.
tert-Butyl 2-(6-Amino-2-methylpyridin-3-yl)-7-azabicyclo-[2.2.1]heptane-7-carboxylate (33). 2-Amino-5-iodo-6-methylpyridine ($\mathbf{3 6 b}, 4.79 \mathrm{~g}, 0.021 \mathrm{~mol}$), $\mathrm{HCO}_{2} \mathrm{~K}(1.72 \mathrm{~g}, 0.021 \mathrm{~mol})$, and $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}(709 \mathrm{mg}, 2.55 \mathrm{mmol})$, followed by DMF (10 mL), was added to a reaction tube containing $20 \mathrm{~b}(2.00 \mathrm{~g}, 10.2 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL}) . \mathrm{Pd}(\mathrm{OAc})_{2}(114 \mathrm{mg}, 0.51 \mathrm{mmol})$ was added to the reaction mixture. The mixture was placed under a N_{2} atmosphere, sealed, and heated at $100^{\circ} \mathrm{C}$ in an oil bath for 24 h . The reaction mixture was cooled to room temperature and diluted with EtOAc $(100 \mathrm{~mL}) . \mathrm{NH}_{4} \mathrm{OH}(15 \%, 100 \mathrm{~mL})$ was added to the reaction mixture, and the organic layer was separated. The aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The organic layer was collected and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed under reduced pressure to give a solid that was purified by column chromatography using CMA80-EtOAc-hexanes (2:1:1) as the eluent to afford $1.48 \mathrm{~g}(47 \%)$ of $\mathbf{3 3}$ as a yellow oil.

6'-Methylepibatidine (34) Hydrochloride. Concentrated $\mathrm{HCl}(20$ $\mathrm{mL}, 37 \%)$, cooled to $0^{\circ} \mathrm{C}$, was added to $33(900 \mathrm{mg}, 2.97 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and stirred for 45 min . At $0^{\circ} \mathrm{C}, \mathrm{NaNO}_{2}(4.10 \mathrm{mg}, 5.94 \mathrm{mmol})$ was added in small portions and the reaction mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for an additional 30 min . The reaction mixture was warmed to room temperature and stirred for 1 h . The mixture was poured into ice $(75 \mathrm{~g})$ containing $\mathrm{NH}_{4} \mathrm{OH}(30 \%, 75 \mathrm{~mL})$ and extracted with CHCl_{3}
$(8 \times 50 \mathrm{~mL})$. The organic layer was collected and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed under reduced pressure. The resulting solidwaspurifiedby columnchromatographyusingCMA80-EtOAc-hexanes (2:1:1) as the solvent mixture to afford $0.207 \mathrm{~g}(31 \%)$ of $\mathbf{3 4}$ as a clear, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H})$, $2.86(\mathrm{dd}, J=5.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=12.0$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 157.2,147.4$, 139.1, 136.7, 121.8, 61.7, 56.9, 42.9, 39.6, 31.7, 30.7, 22.7. LRMS (ES) $m / z: 223.2(\mathrm{M}+\mathrm{H})^{+}$. A sample was converted to the hydrochloride salt. Anal. Calcd $\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}\right)$: C, H, N.
N-Methylepibatidine (35) Hydrochloride. Epibatidine (0.70 g , $0.00335 \mathrm{~mol})$, paraformaldehyde ($3.5 \mathrm{~g}, 0.167 \mathrm{~mol}$), and formic acid (20 mL) were placed in a sealed vessel and stirred at $110^{\circ} \mathrm{C}$ for 5 h . The flask was cooled, diluted with water (200 mL), basified with $50 \% \mathrm{NaOH}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to afford 0.30 g of a beige solid. The base was dissolved in ether (75 mL), filtered, and acidified with ethereal HCl . The mixture was concentrated by a stream of nitrogen gas and then dried in a vacuum oven to afford 0.23 g (24%) of $\mathbf{3 5}$ as a white solid. mp 180-184 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.68-1.95(\mathrm{~m}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.62$ (dd, $J=5,9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17 (br s, 1H), 3.34 (br s, 1 H), 8.22 (s, $1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd $\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot 1^{2} /{ }_{3} \mathrm{H}_{2} \mathrm{O}\right)$: C, H, N.
tert-Butyl 1,4-Dihydro-1,4-epiminonaphthalene-9-carboxylate (38). 2-Trimethylsilylphenyl trifluoromethanesulfonate (37, 2.98 g , 0.010 mol) was stirred overnight at room temperature with t-butyl 1-pyrrolecarboxylate ($\mathbf{1 0}, 1.67 \mathrm{~g}, 0.010 \mathrm{~mol}$) and anhydrous cesium fluoride ($1.67 \mathrm{~g}, 0.011 \mathrm{~mol}$) in 10 mL of anhydrous acetonitrile. The solid was filtered, and the solvent was evaporated. Ether was added, and a solid formed that was separated. The ether was evaporated to yield a yellow oil. Flash chromatography over silica gel with 20% ethyl acetate in hexane afforded $1.21 \mathrm{~g}(50 \%)$ of 38 as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.25(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{~m}, 4 \mathrm{H})$, $5.48(\mathrm{~s}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 155.5,148.7,143.9$, $142.8,125.3,121.4,121.1,80.9,67.2,66.6,28.5$.
This product was used in the next step without further purification.
tert-Butyl 2-(6-Aminopyridin-3-yl)-1,2,3,4-tetrahydro-1,4-epi-minonaphthalene-9-carboxylate (39). A solution of 38 (1.00 g, 0.004 mol), 2-amino-5-iodopyridlne ($1.08 \mathrm{~g}, 0.005 \mathrm{~mol}$), potassium formate ($691 \mathrm{mg}, 8.22 \mathrm{mmol}$), tetrabutyl ammonium chloride (286 $\mathrm{mg}, 1.03 \mathrm{mmol}$), and palladium (II) chloride (152 mg) in 8.2 mL of DMF was stirred for 18 h at $60^{\circ} \mathrm{C}$ under nitrogen. Water was added, and the mixture was extracted with ethyl acetate. The combined ethyl acetate extracts were washed with brine, dried with magnesium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 5% methanol in ethyl acetate afforded 500 mg (36%) of 39 as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.98(\mathrm{~s}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.73(\mathrm{dd}$, $J=4.2,8.4,1 \mathrm{H}), 2.10(\mathrm{dt}, J=4.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=9$, $11.7,1 \mathrm{H}) 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 157.5,147.3,146.0$, $137.0,130.0,126.8 ; 126.7,120.2,109.0,80.5,67.8,61.5,43.2$, 37.7, 28.4.

This product was used in the next step without further purification.
2-(6-Chloropyridin-3-yl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene (8a). To a stirred, $0^{\circ} \mathrm{C}$ solution of $39(200 \mathrm{mg}, 0.593 \mathrm{mmol})$ in 2.0 mL of concentrated hydrochloric acid was slowly added sodium nitrite ($736 \mathrm{mg}, 10.7 \mathrm{mmol}$). The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. A solution of 50% ammonium hydroxide in water was added dropwise to the solution, and the solution was extracted with chloroform. The combined chloroform extracts were washed with brine, dried with magnesium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 50% methanol in ethyl acetate afforded $40.0 \mathrm{mg}(26 \%)$ of $\mathbf{8 a}$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.37(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ (dd, $J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=4.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.99$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 149.8,149.6,149.1,140.5,138.4$, $126.6,126.4,124.2,119.9,119.6,67.7,61.5,42.2,37.9$. The free
amine was dissolved in 3 mL of ether at $0^{\circ} \mathrm{C}$. Hydrochloric acid in ether ($0.13 \mathrm{~mL}, 0.136 \mathrm{mmol}, 1 \mathrm{M}$) was added. The solution was stirred for 1 h , and the ether was evaporated to yield 45 mg (100%) of a white solid (hydrochloride salt). $\mathrm{mp} 186^{\circ} \mathrm{C}$ (decomp). Anal. Calcd ($\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot{ }^{2} /{ }_{3} \mathrm{H}_{2} \mathrm{O}$): C, H, N.
tert-Butyl 2-(6-Amino-5-bromopyridin-3-yl)-1,2,3,4-tetrahy-dro-1,4-epiminonaphthalene-9-carboxylate (40). Bromine (0.24 $\mathrm{mL}, 4.67 \mathrm{mmol})$ and triethylamine (0.24 mL) were added, under nitrogen, dropwise to a stirred, $0^{\circ} \mathrm{C}$ solution of $39(1.05 \mathrm{~g}, 0.003$ mol) in 7.0 mL of acetic acid and 7.8 mL of methylene chloride. After stirring at $0{ }^{\circ} \mathrm{C}$ for 4 h , the solution was neutralized with 50% ammonium hydroxide in water and extracted with chloroform. The combined chloroform extracts were dried with magnesium sulfate, filtered, and evaporated. Flash chromatography of the residue over silica gel with 20% ethyl acetate in hexane afforded $810 \mathrm{mg}(62 \%)$ of $\mathbf{4 0}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.94$ (s, $1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 5.00 (br s, 2H), 4.95 (s, 1H), 2.72 (dd, $J=4.5,8.7,1 \mathrm{H}$), 2.07 (dt, $J=4.5,11.7,1 \mathrm{H}), 1.90(\mathrm{dd}, J=8.7,12 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 155.8,154.7,146.4,146.1,139.5,131.8$, 127.1, 126.9, 120.4, 120.1, 105.1, 80.8, 67.8, 61.6, 42.9, 38.0, 28.6.

This product was used in the next step without further purification.
tert-Butyl 2-(6-Amino-5-phenylpyridin-3-yl)-1,2,3,4-tetrahy-dro-1,4-epiminonaphthalene-9-carboxylate (41). A solution of 40 ($500 \mathrm{mg}, 0.0012 \mathrm{~mol}$), sodium carbonate ($255 \mathrm{mg}, 2.40 \mathrm{mmol}$), phenylboronic acid ($234 \mathrm{mg}, 1.92 \mathrm{mmol}$), tri (o-tolyl)phosphine (7.3 $\mathrm{mg}, 0.024 \mathrm{mmol}$), palladium (II) acetate ($2.7 \mathrm{mg}, 0.012 \mathrm{mmol}$), and 0.9 mL degassed water in 4.8 mL of dimethyl ethylene glycol was placed in a sealed tube, stirred, and heated at $90^{\circ} \mathrm{C}$ for 22 h . Saturated sodium bicarbonate solution was added, and the solution was extracted with ethyl acetate. The combined ethyl acetate extracts were washed with brine, dried with magnesium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 50% ethyl acetate in hexane afforded $468 \mathrm{mg}(94 \%)$ of 41 as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 7 \mathrm{H}), 7.16(\mathrm{dd}, J=3,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.24$ (br $\mathrm{s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=4.5,8.7,1 \mathrm{H})$, $2.15(\mathrm{dt}, J=4.5,11.7,1 \mathrm{H}), 1.91(\mathrm{dd}, J=8.7,12 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 155.6,155.1,146.5,146.3,138.6,137.3$, 130.7, 129.4, 129.1, 128.2, 127.0, 126.9, 122.3, 120.4, 120.1, 80.6, 67.9, 61.5, 43.3, 37.9, 28.6.

This product was used in the next step without further purification.
2-(6-Fluoro-5-phenylpyridin-3-yl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene (8b). To a stirred, $-9^{\circ} \mathrm{C}$ solution of 41 (232 $\mathrm{mg}, 0.561 \mathrm{mmol})$ in 1.0 mL of anhydrous pyridine was added dropwise 2.0 mL of hydrofluoric acid in pyridine (7:3). Sodium nitrite ($387 \mathrm{mg}, 5.61 \mathrm{mmol}$) was added slowly to the solution. The solution was stirred for 2 h while warming from $7{ }^{\circ} \mathrm{C}$ to room temperature. The solution was neutralized with 50% ammonium hydroxide in water and extracted with chloroform. The combined chloroform extracts were washed with brine, dried with sodium sulfate, filtered, and evaporated. Flash chromatography over silica gel with 50% hexane in ethyl acetate afforded 43.8 mg (25%) of 8b. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.19(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}$, $3 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}$, $1 \mathrm{H}), 2.82(\mathrm{dd}, J=4.5,8.7,1 \mathrm{H}), 2.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.04(\mathrm{dt}, J=4.5$, $11.7,1 \mathrm{H}), 1.94(\mathrm{dd}, J=8.7,12 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $159.4(\mathrm{~d}, J=237 \mathrm{~Hz}), 149.3(\mathrm{~d}, J=46.9 \mathrm{~Hz}), 145.3(\mathrm{~d}, J=14.3$ $\mathrm{Hz}), 140.3,140.2,139.7,139.6,134.4,134.3^{\prime}, 128.9,128.8,128.6$, $128.5,128.3,126.4,123.2(\mathrm{~d}, J=28.3 \mathrm{~Hz}), 119.5(\mathrm{~d}, J=27.0$ $\mathrm{Hz}), 67.6,61.3,41.9,37.7$. To a stirred, $-10^{\circ} \mathrm{C}$ solution of the free amine in 2 mL of methylene chloride was added 1 mL of hydrochloric acid in ether (1 M). The solution was stirred for 3 h while warming to $10^{\circ} \mathrm{C}$. The solution was evaporated and dried on the vacuum pump overnight. Recrystallization from chlo-roform-ether provided 45.2 mg (89.5%) of a white solid. Anal. Calcd ($\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClFN}_{2} \cdot{ }^{2} / 3 \mathrm{H}_{2} \mathrm{O}$): C, H, N.

Acknowledgment. This research was supported by the National Institute on Drug Abuse, Grant DA12002.

Supporting Information Available: Results from elemental analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. Epibatidine: A novel (chloropyridyl)azabicycloheptane with potent analgesic activity from an Ecuadoran poison frog. J. Am. Chem. Soc. 1992, 114, 3475-3478.
(2) Badio, B.; Daly, J. W. Epibatidine, a potent analgetic and nicotinic agonist. Mol. Pharmacol. 1994, 45, 563-569.
(3) Badio, B.; Shi, D.; Garraffo, M.; Daly, J. W. Antinociceptive effects of the alkaloid epibatidine: Further studies on involvement of nicotinic receptors. Drug Dev. Res. 1995, 36, 46-59.
(4) Damaj, M. I.; Creasy, K. R.; Grove, A. D.; Rosecrans, J. A.; Martin, B. R. Pharmacological effects of epibatidine optical enantiomers. Brain Res. 1994, 664, 34-40.
(5) Carroll, F. I. Epibatidine structure-activity relationships. Bioorg. Med. Chem. Lett. 2004, 14, 1889-1896.
(6) Daly, J. W. Nicotinic agonists, antagonists, and modulators from natural sources. Cell. Mol. Neurobiol. 2005, 25, 513-552.
(7) Jensen, A. A.; Frolund, B.; Liljefors, T.; Krogsgaard-Larsen, P. Neuronal nicotinic acetylcholine receptors: Structural revelations, target identifications, and therapeutic inspirations. J. Med. Chem. 2005, 48, 4705-4745.
(8) Koren, A. O.; Horti, A. G.; Kimes, A.; Scheffel, U.; Ravert, H. T.; London, E. D.; Dannals, R. F. Synthesis and evaluation of benzoanalogs of epibatidine as potential nAChR ligands for PET studies. J. Labelled Cpd. Radiopharm. 1997, 40, 518.
(9) Brieaddy, L. E.; Mascarella, S. W.; Navarro, H. A.; Atkinson, R. N.; Damaj, M. I.; Martin, B. R.; Carroll, F. I. Synthesis of bridged analogs of epibatidine. 3-Chloro-5,7,8,9,9a,10-hexahydro-7,10-methanopyr-rolo[1,2-b]-2,6-naphthyridine and 2-chloro-5,5a,6,7,8,10-hexahydro-5,8-methanopyrrolo[2,1-b]-1,7-naphthyridine. Tetrahedron Lett. 2001, 42, 3795-3797.
(10) Tsukazaki, M.; Snieckus, V. Synthetic connection to the directed ortho metalation reaction. 3,4-Pyridynes from 4-trialkylsilyl-3-pyridyl triflates. Heterocycles 1992, 33, 533-536.
(11) Turner, S. C.; Hongbin, Z.; Rapoport, H. Enantiospecific synthesis of annulated nicotine analogues from D- and L-glutamic acid. Pyridotropanes. J. Org. Chem. 2000, 65, 861-870.
(12) Walters, M. A.; Shay, J. J. 2,3-Pyridyne formation by fluoride-induced desilylation elimination. Syn. Commun. 1997, 27, 3573-3579.
(13) Marchand, A. P.; Allen, R. W. Synthesis of 7-azanorbornene and N-methyl-7-azanorbornene. J. Org. Chem. 1975, 40, 2551-2552.
(14) de Meijere, A.; Meyer, F. E. Fine feathers make fine birds: The Heck reaction in modern Garb. Angew. Chem., Int. Ed. Engl. 1994, 33, 23792411.
(15) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Transition metalcatalyzed carbocyclizations in organic synthesis. Chem. Rev. 1996, 96, 635-662.
(16) Ripa, L.; Hallberg, A. Intramolecular enantioselective palladiumcatalyzed heck arylation of cyclic enamides. J. Org. Chem. 1997, 62, 595-602.
(17) Hoepping, A.; Johnson, K. M.; George, C.; Flippen-Anderson, J.; Kozikowski, A. P. Novel conformationally constrained tropane analogues by 6 -endo-trig radical cyclization and stille coupling-Switch of activity toward the serotonin and/or norepinephrine transporter. J. Med. Chem. 2000, 43, 2064-2071.
(18) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Radical reactions in natural product synthesis. Chem. Rev. 1991, 91, 1237-1286.
(19) Liang, F.; Navarro, H. A.; Abraham, P.; Kotian, P.; Ding, Y.-S.; Fowler, J.; Volkow, N.; Kuhar, M. J.; Carroll, F. I. Synthesis and nicotinic acetylcholine receptor binding properties of exo-2-(2'-fluoro-5'-pyridinyl)-7-azabicyclo[2.2.1]heptane: A new positron emission tomography ligand for nicotinic receptors. J. Med. Chem. 1997, 40, 2293-2295.
(20) Horti, A. G.; Scheffel, U.; Kimes, A. S.; Musachio, J. L.; Ravert, H. T.; Mathews, W. B.; Zhan, Y.; Finley, P. A.; London, E. D.; Dannals,
R. F. Synthesis and evaluation of $N-\left[{ }^{11} \mathrm{C}\right]$ methylated analogues of epibatidine as tracers for positron emission tomographic studies of nicotinic acetylcholine receptors. J. Med. Chem. 1998, 41, 4199-4206.
(21) Constable, K. P.; Blough, B. E.; Carroll, F. I. Benzyne addition to N-alkyl-4-hydroxy-1-methylisoquinolinium salts; A new and convenient synthesis of (\pm)-5-methyl-10,11-dihydro- $5 H$-dibenzo[a,d]cyclo-hepten-5,10-imine (MK801). J. Chem. Soc., Chem. Commun. 1996, 717-718.
(22) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Fluoride-induced 1,2elimination of 0-trimethylsilylphenyl triflate to benzyne under mild conditions. Chem. Lett. 1983, 12, 1211-1214.
(23) Shankaran, K.; Snieckus, V. Silicon in benzamide directed ortho metalation. Formation and reactions of benzamide benzynes. Tetrahedron Lett. 1984, 25, 2827-2830.
(24) Carroll, F. I.; Ware, R.; Brieaddy, L. E.; Navarro, H. A.; Damaj, M. I.; Martin, B. R. Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 2^{\prime}-fluoro- 3^{\prime}-(substituted phenyl)deschloroepibatidine analogs. Novel nicotinic antagonist. J. Med. Chem. 2004, 47, 4588-4594.
(25) Carroll, F. I.; Liang, F.; Navarro, H. A.; Brieaddy, L. E.; Abraham, P.; Damaj, M. I.; Martin, B. R. Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 2-exo-2-(2^{\prime} substituted 5'-pyridinyl)-7-azabicyclo[2.2.1]heptanes. Epibatidine analogues. J. Med. Chem. 2001, 44, 2229-2237.
(26) Carroll, F. I.; Lee, J. R.; Navarro, H. A.; Brieaddy, L. E.; Abraham, P.; Damaj, M. I.; Martin, B. R. Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 2-exo-2-(2^{\prime} -substituted-3'-phenyl-5'-pyridinyl)-7-azabicyclo[2.2.1]heptanes. Novel nicotinic antagonist. J. Med. Chem. 2001, 44, 4039-4041.
(27) Campillo, N.; Paez, J. A.; Alkorta, I.; Goya, P. A theoretical study of epibatidine. J. Chem. Soc., Perkin Trans. 1998, 2, 2665-2670.
(28) Glennon, R. A.; Dukat, M. Nicotinic cholinergic receptor pharmacophores. Neuronal Nicotinic Receptors: Pharmacology and Therapeutic Opportunities; Wiley-Liss, Inc.: New York, 1998; pp 271-284.
(29) Glennon, R. A.; Dukat, M. Central nicotinic receptor ligands and pharmacophores. Pharm. Acta Helv. 2000, 74, 103-114.
(30) Meyer, M. D.; Decker, M. W.; Rueter, L. E.; Anderson, D. J.; Dart, M. J.; Kim, K. H.; Sullivan, J. P.; Williams, M. The identification of novel structural compound classes exhibiting high affinity for neuronal nicotinic acetylcholine receptors and analgesic efficacy in preclinical models of pain. Eur. J. Pharmacol. 2000, 393, 171-177.
(31) Bourne, Y.; Talley, T. T.; Hansen, S. B.; Taylor, P.; Marchot, P. Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors. EMBO J. 2005, 24, 1512-1522.
(32) Tonder, J. E.; Hansen, J. B.; Begtrup, M.; Pettersson, I.; Rimvall, K.; Christensen, B.; Ehrbar, U.; Olesen, P. H. Improving the nicotinic pharmacophore with a series of (isoxazole)methylene-1-azacyclic compounds: Synthesis, structure-activity relationship, and molecular modeling. J. Med. Chem. 1999, 42, 4970-4980.
(33) Tonder, J. E.; Olesen, P. H.; Hansen, J. B.; Begtrup, M.; Pettersson, I. An improved nicotinic pharmacophore and a stereoselective CoMFAmodel for nicotinic agonists acting at the central nicotinic acetylcholine receptors labelled by. J. Comput. Aided Mol. Des. 2001, 15, 247258.
(34) Tripos SYBYL, 6.7.1 ed.; Tripos, Inc., St. Louis, MO.
(35) Li, T.; Qian, C.; Eckman, J.; Huang, D. F.; Shen, T. Y. The analgesic effect of epibatidine and isomers. Bioorg. Med. Chem. Lett. 1993, 3, 2759-2764.
(36) Wei, Z.-L.; Petukhow, P. A.; Xiao, Y.; Tuckmantel, W.; George, C.; Kellar, K. J.; Kozikowski, A. P. Synthesis, nicotinic acetylcholine receptor binding affinities, and molecular modeling of constrained epibatidine analogues. J. Med. Chem. 2003, 46, 921-924.
(37) Abe, H.; Arai, Y.; Aoyagi, S.; Kibayashi, C. Synthesis of conformationally constrained spirodihydrofuropyridine analoges of epibatidine. Tetrahedron Lett. 2003, 44, 2971-2973.
(38) Navarro, H. A.; Xu, H.; Zhong, D.; Abraham, P.; Carroll, F. I. In vitro and In vivo characterization of $\left[{ }^{125} I\right]$ iodomethyllycaconitine in the rat. Synapse 2002, 44, 117-123.

JM0704696

[^0]: * To whom correspondence should be addressed. Telephone: 919-5416679. Fax: 919-541-8868. E-mail: fic@rti.org.
 ${ }^{\dagger}$ Research Triangle Institute.
 * Virginia Commonwealth University.
 ${ }^{a}$ Abbreviations: nAChR, nicotinic acetylcholine receptor; $\left[{ }^{3} \mathrm{H}\right]$, tritium.

